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It was pointed out by Buerger (1942) that the variation in 
the lengths of the reflexion-spots in upper-level Weissenberg 
photographs is due to the divergence of the X-ray beam 
emerging from the collimator. The expressions for the spot- 
size variation were deduced by Phillips (1954) for the nor- 
mal-beam and equi-inclination methods and by Lonsdale 
(1964) for the general case. Some of Lonsdale's formulae 
differed from those of Phillips by a factor sec a or sec vt. 
A re-examination of the matter reported in this note indi- 
cates that the formulae deduced by Phillips and Lonsdale 
are under two different experimental conditions regarding 
the position and the length of the crystal in the beam. It 
has been shown, by using the concepts of total and effective 
divergences, that the length of the reflexion spot, ~, on a 
stationary camera and the change, AE, due to camera trans- 
lation, depend on the manner in which the crystal is bathed 
in the beam but the ratio dE/5~ is independent of it. 

• Total and effective divergences 

Although the beam emerging from the collimator has a 
definite divergence, the divergence which is effective in the 
diffraction experiments is determined by the length of the 
crystal in the beam. Referring to Fig. 1, the angle 2ct be- 
tween the extreme rays, S X  and SY,  is the total divergence 

* C.S.I.R. Fellow. 
t The notation used in this paper is the same as that used 

by Lonsdale (1964). 

2¢I 

j 2  a i 

of the beam. If  AB is the port ion of the crystal in the beam 
/ _ A S B = 2 ~  is the effective divergence. The length of the 
crystal, PQ, is denoted by L and the length of the crystal 
in the beam by l~ or &. The subscripts i and n denote in- 
clined-beam and normal-beam cases respectively. 

Let us study the variation of 2~ and h with a in the fol- 
lowing distinct cases. 

Case I 

L < 2ctr0 and A O =  OB (Fig. 1). r0 is the source-to-crystal 
distance, SO. 

Since the crystal remains in the beam for all values of a, 

h = l n = L .  (1) 

From triangles A S B  and A'MB" we have 

L = 2~nr0 (1 a) 
and 

M B ' =  L cos a = 2~ro.  (lb) 

Equations ( la)  and (lb) give 

2~z = 2~,~ cos a • (2) 

Case II 

L > 2~ro and A O = OB (Fig. 2). 
If A ' N  and B'N" are perpendiculars drawn from A' and 

B' on PQ, 
A'B" = h = (NO + ON')  sec a 

= NN" see p .  

Since ~ is small, A N =  N'B,  and therefore N N ' =  A B =  ln. 
Thus 

l~ = In sec a .  (3) 
Obviously, 

2~ = 2~n = 2ct. (4) 

Equations (3) and (4) hold good for a <cos-l(2~tro/L). 
For a > cos-l(2ctro/L), the crystal is completely in the beam 
and case II degenerates into case I. 
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Fig. 1. Case I. L < 2~r0. The positions of the crystal are marked 
by heavy lines. 

Case III 

The crystal is situated in the beam as shown in Fig. 3. 
The two portions OA and OB can be treated separately. 

It is easily seen that  AO remains in the beam for all values 
of a, and therefore corresponds to case I, while OB (if 
OB > ~r0) corresponds to case II. Let 

OA =l~, OB =I~', AB =It,, u +l~ =In 
OA" = l ~, OB" - l  i -  1i, A 'B' = l[ + l~ I = l~ 

/ASO-~,,- t ,  / O S B  =o~t=o~, 

/ A ' S O  =0¢~ and / OSB'=o~t=o~. 

Now 
h= l[ + 1 l' 

=1.' +ffsec~, 
=/,,[1 + k sec z]/[1 + k] ,  

(5) 
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Fig.2. Case II. L > 2~r0. The positions of the crystal are marked by heavy lines. 

2~ = 2c~,[k + cos p]/[1 + k] .  (6) 

Thus the variations of l~ and 2~ with p are given by equa- 
tions (5) and (6) for ~ < cos-l(~ro/OQ). 

Any other possible position of the crystal can always be 
described in terms of these three cases. 

A.P 
Fig.3. Case III. OQ>~ro. The positions of the crystal are 

marked by heavy lines. 

where k=lH/l ~.,,,.,,. In the above derivation equations (1) and 
(3) have been used. 

I__ H I__ Since ~/~,,-l  n/1 , -k ,  it can be shown similarly that 

Reflexion-spot length on a stationary camera of radius rl 

For the derivation of the expressions for ~, see Phillips 
(1954) and Lonsdale (1964). Replacing l by h and ~t by ~ 
in Lonsdale's equation (1), we have 

.~ = 20~irl c o s  p/cos31 ) d- h .  (7) 

Substituting the values of 2~ and l~ in terms of 2~, and 
l, in equation (7) and noting that l~ = 2~,,r0, we have 

= m[rl COS2fl/COS3v + r0] (8) 

where m= 2~, 2~n sec/~ and 2~n[1 + k sec •]/[1 + k] for cases 
I, II and III respectively. Equation (8) for case II is same 
as Lonsdale's equation (3). Thus the derivations of Lonsdale 
correspond to case II. Equation (8) for case I reduces to 
Phillips's equation (26). Phillips's equations correspond to 
case I. It must be noted that equation (8) reduces to the 
same form in all the three cases for the normal-beam 
method. 

The angular range of reflexion, Atp 

Replacing o~ by ~ in Lonsdale's equation (5), we have 

d~ = 20~ f(~, (,p) sec p (9) 
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where 
[(~2 -I" ~2) sin u + 2~] 

f(~, ~,u) = [(g2 + {2){4 cosZu- 4{ sin u -  (~z + ~2)} _ 4~2] ~ " 

Substituting for 2~ in terms of 20~,~ in the three cases we 
have, 

A~o = m f(¢,~,l.O (10) 

where m = 2~n, 2~n sec/~ and 2~,,[1 + k sec ~]/[I + k] for cases 
I, II and I l l  respectively. Since a£=a~0.c2 (c2 being the 
constant of the Weissenberg goniometer), it can be easily 
verified that A~/£ is same in the three cases. This explains 
why Lonsdale's expression for (~+AE) /~  in the case of 

the equi-inclination method is the same as that obtained 
by Phillips, though their expressions for ~ and A~ are dif- 
ferent. 

Thanks are due to Prof. S. Ramaseshan for encourage- 
ment and help and to Dr S. Swaminathan for some helpful 
discussions. 
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In a previous review of organic charge-transfer complexes 
(Wallwork, 1961) it was concluded that only in the case of 
complexes between powerful electron acceptors and electron 
donors were the relative orientations and modes of stacking 
of the two component molecules those expected for maxi- 
mum overlap of their n orbitals. In complexes of trinitro- 
benzene, for example, the relative dispositions were con- 
sistent rather with maximum van der Waals interaction 
though, for two complexes of this type, Hanson (1964) has 
found indications of a specific interaction between the ni- 
trogen atom of an indole ring in the donor molecules and a 
non-substituted carbon atom of trinitrobenzene. 

Quinhydrones seem to form an intermediate case in that 
the relative orientation of the phenol and quinone com- 
ponents are the same, as might be expected for maximum 
interaction, but their molecular centres are displaced side- 
ways so that one C = O group of the quinone lies approx- 
imately over the centre of the aromatic ring of the phenol. 
Further examples of this have since been found in the crystal 
structures of 1:1 and 2:1 complexes ofp-halogenophenols 
with p-benzoquinone (Shipley & Wallwork, 1966) and in 
a second form of quinhydrone itself (Sakurai, 1965). A sug- 
gested interpretation was that this arrangement represents 
a compromise between the requirements of charge transfer 
and hydrogen bonding. However, the retention of this ar- 
rangement in charge-transfer complexes of quinones where 
no hydrogen bonding is possible, as in the perylene-fluoranil 
complex (Hanson, 1963) suggests that there might be a 
specific interaction between C = O  groups and aromatic 
rings. This view is supported by the molecular arrangements 
in other complexes, e.g. that between bis-8-hydroxyquinoli- 
natopalladium(II) and chloranil (Kamenar, Prout & Wright, 
1966), and in some crystals containing only one type of 
molecule, e.g. 1,4-naphthoquinone (Gaultier & Hauw, 1965), 
5,8-dihydroxy-l,4-naphthaquinone (Pascard-Billy, 1962), 
and bis-8-hydroxyquinolinatopalladium(II) (Prout &Wheel- 
er, 1966). 

Two types of molecular interaction involving C = O  
groups have previously been recognized by their influence 
on crystal structures. In the first type, exemplified by the 
structures of chloranil (Chu, Jeffrey & Sakurai, 1962) and 
alloxan (Bolton, 1964), one C = O  group points towards 

the carbon atom of a second C =  O group inclined at a 
large angle to the first, with a separation O. • • C of about 
2.8/~. 

In the second type, found for example in violuric acid 
(Craven & Mascarenhas, 1964), dilituric acid (Craven, 
Martinez-Carrera & Jeffrey, 1964) and tetrahydroxy-p- 
benzoquinone (Klug, 1965), C = O groups in adjacent mol- 
ecular layers overlap in an antiparallel manner with separa- 
tions of about 3.15/~. These interactions seem to be polar 
in character and the interaction now reported between 
C = O groups and aromatic rings may be an extension of 
this type, involving dipole-induced dipole forces. An ex- 
ample of an end-on interaction between a P = O group and 
an aromatic ring perpendicular to it, recently found in the 
structure of a complex between triethyl phosphate and 
benzotrifuroxan (Cameron & Prout, 1966), lends further 
plausibility to this view. 

There is evidence that carbon-carbon double bonds that 
are polarized by their environment can also interact with 
aromatic rings in adjacent molecules. This effect is found 
in the complexes formed by 7,7,8,8-tetracyanoquinodi- 
methane with NNN'N'-tetramethyl-p-phenylenediamine 
(Hanson, 1965) and by tetracyanoethylene with naphthalene 
(Williams & Wallwork, 1966). In both these structures, 
a C = C group of the acceptor molecule lies parallel to an 
aromatic ring of an adjacent donor molecule in the mo- 
lecular stack, in such a way that there are close intermo- 
lecular contacts to the 1 and 4 positions in the ring. The 
bond distances in the components are consistent with their 
being at least partially in the ionic form, by the transfer 
of charge from donor to acceptor, and the close approaches 
are presumably due to a combination of polar and charge- 
transfer interactions. Such complexes as these are probably 
formed as intermediates in Diels-Alder reactions and, in 
fact, this type of reaction does take place at room temper- 
ature between tetracyanoethylene and anthracene, with the 
transitory formation of a coloured intermediate. 

Where specific interactions involving C = O  or C = C  
groups do occur in charge-transfer complexes they will 
compete with the tendency towards maximum overlap of 
the molecular re orbitals of the two components, often 
resulting in the staggered type of molecular stacking. 


